Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2188-2199, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479351

RESUMO

Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Camundongos , Hidrogéis/farmacologia , Hidrogéis/química , Engenharia Tecidual/métodos
2.
Sci Rep ; 11(1): 19921, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620912

RESUMO

Fluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher Scientific FluoSpheres, were used in these proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from - 43 to - 15 mV. A conjugation-annealing handle and DNA aptamer probe were attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 3 to 12 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use nanoparticles in biological experiments.


Assuntos
Técnicas Biossensoriais , Sondas de DNA/química , Corantes Fluorescentes/química , Nanopartículas/química , Peptídeos/análise , Proteínas/análise , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Humanos , Nanotecnologia , Polietilenoglicóis , Pontos Quânticos , Coloração e Rotulagem
3.
Elife ; 62017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548638

RESUMO

The HIV-1 envelope (Env) glycoprotein binds to host cell receptors to mediate membrane fusion. The prefusion Env trimer is stabilized by V1V2 loops that interact at the trimer apex. Broadly neutralizing antibodies (bNAbs) against V1V2 loops, exemplified by PG9, bind asymmetrically as a single Fab to the apex of the symmetric Env trimer using a protruding CDRH3 to penetrate the Env glycan shield. Here we characterized a distinct mode of V1V2 epitope recognition by the new bNAb BG1 in which two Fabs bind asymmetrically per Env trimer using a compact CDRH3. Comparisons between cryo-EM structures of Env trimer complexed with BG1 (6.2 Å resolution) and PG9 (11.5 Å resolution) revealed a new V1V2-targeting strategy by BG1. Analyses of the EM structures provided information relevant to vaccine design including molecular details for different modes of asymmetric recognition of Env trimer and a binding model for BG1 recognition of V1V2 involving glycan flexibility.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/ultraestrutura , Microscopia Crioeletrônica , Anticorpos Anti-HIV/metabolismo , Anticorpos Anti-HIV/ultraestrutura , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Ligação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
4.
Elife ; 62017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198699

RESUMO

Dissemination of HIV-1 throughout lymphoid tissues leads to systemic virus spread following infection. We combined tissue clearing, 3D-immunofluorescence, and electron tomography (ET) to longitudinally assess early HIV-1 spread in lymphoid tissues in humanized mice. Immunofluorescence revealed peak infection density in gut at 10-12 days post-infection when blood viral loads were low. Human CD4+ T-cells and HIV-1-infected cells localized predominantly to crypts and the lower third of intestinal villi. Free virions and infected cells were not readily detectable by ET at 5-days post-infection, whereas HIV-1-infected cells surrounded by pools of free virions were present in ~10% of intestinal crypts by 10-12 days. ET of spleen revealed thousands of virions released by individual cells and discreet cytoplasmic densities near sites of prolific virus production. These studies highlight the importance of multiscale imaging of HIV-1-infected tissues and are adaptable to other animal models and human patient samples.


Assuntos
Tomografia com Microscopia Eletrônica , Imunofluorescência , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Imageamento Tridimensional , Estruturas Animais/virologia , Animais , Líquidos Corporais/virologia , Estudos Longitudinais , Camundongos SCID , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 113(46): E7151-E7158, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799557

RESUMO

The HIV-1 envelope (Env) glycoprotein, a trimer of gp120-gp41 heterodimers, relies on conformational flexibility to function in fusing the viral and host membranes. Fusion is achieved after gp120 binds to CD4, the HIV-1 receptor, and a coreceptor, capturing an open conformational state in which the fusion machinery on gp41 gains access to the target cell membrane. In the well-characterized closed Env conformation, the gp120 V1V2 loops interact at the apex of the Env trimer. Less is known about the structure of the open CD4-bound state, in which the V1V2 loops must rearrange and separate to allow access to the coreceptor binding site. We identified two anti-HIV-1 antibodies, the coreceptor mimicking antibody 17b and the gp120-gp41 interface-spanning antibody 8ANC195, that can be added as Fabs to a soluble native-like Env trimer to stabilize it in a CD4-bound conformation. Here, we present an 8.9-Šcryo-electron microscopy structure of a BG505 Env-sCD4-17b-8ANC195 complex, which reveals large structural rearrangements in gp120, but small changes in gp41, compared with closed Env structures. The gp120 protomers are rotated and separated in the CD4-bound structure, and the three V1V2 loops are displaced by ∼40 Šfrom their positions at the trimer apex in closed Env to the sides of the trimer in positions adjacent to, and interacting with, the three bound CD4s. These results are relevant to understanding CD4-induced conformational changes leading to coreceptor binding and fusion, and HIV-1 Env conformational dynamics, and describe a target structure relevant to drug design and vaccine efforts.


Assuntos
Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Antígenos CD4/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
6.
Cell Rep ; 16(8): 2169-2177, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524616

RESUMO

Integral membrane proteins (IMPs) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels vary widely and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Mycobacterium smegmatis/genética , Sequência de Aminoácidos , Membrana Celular/química , Clonagem Molecular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
Immunity ; 42(6): 1021-32, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084022

RESUMO

MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is upregulated during aging. Both overexpression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrate that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that might play a role in age-related hematopoietic defects.


Assuntos
Células da Medula Óssea/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , MicroRNAs/metabolismo , Envelhecimento/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular , Sobrevivência Celular/genética , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , Fator de Células-Tronco/metabolismo
8.
mBio ; 6(2)2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900654

RESUMO

UNLABELLED: Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. IMPORTANCE: SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.


Assuntos
Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Anticorpos Anti-HIV/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Gorilla gorilla , Humanos , Concentração Inibidora 50 , Testes de Neutralização , Pan troglodytes , Vírus da Imunodeficiência Símia/isolamento & purificação
9.
Cell ; 160(3): 433-46, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635457

RESUMO

Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the range of mutations permitting antibody evasion. To test this idea, we engineered antibody-based molecules capable of bivalent binding through intra-spike crosslinking. We used DNA as a "molecular ruler" to measure intra-epitope distances on virion-bound spikes and construct intra-spike crosslinking molecules. Optimal bivalent reagents exhibited up to 2.5 orders of magnitude increased potency (>100-fold average increases across virus panels) and identified conformational states of virion-bound spikes. The demonstration that intra-spike crosslinking lowers the concentration of antibodies required for neutralization supports the hypothesis that low spike densities facilitate antibody evasion and the use of molecules capable of intra-spike crosslinking for therapy or passive protection.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Anti-HIV/química , HIV-1 , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Anticorpos Neutralizantes/imunologia , Reagentes de Ligações Cruzadas/metabolismo , Cristalografia por Raios X , Epitopos , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Imunoglobulina G/imunologia , Engenharia de Proteínas
10.
Protein Eng Des Sel ; 27(10): 325-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25301959

RESUMO

Engineered fusion proteins containing two or more functional polypeptides joined by a peptide or protein linker are important for many fields of biological research. The separation distance between functional units can impact epitope access and the ability to bind with avidity; thus the availability of a variety of linkers with different lengths and degrees of rigidity would be valuable for protein design efforts. Here, we report a series of designed structured protein linkers incorporating naturally occurring protein domains and compare their properties to commonly used Gly4Ser repeat linkers. When incorporated into the hinge region of an immunoglobulin G (IgG) molecule, flexible Gly4Ser repeats did not result in detectable extensions of the IgG antigen-binding domains, in contrast to linkers including more rigid domains such as ß2-microglobulin, Zn-α2-glycoprotein and tetratricopeptide repeats. This study adds an additional set of linkers with varying lengths and rigidities to the available linker repertoire, which may be useful for the construction of antibodies with enhanced binding properties or other fusion proteins.


Assuntos
Maleabilidade , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Cromatografia em Gel , Hidrodinâmica , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(17): 6626-33, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23542380

RESUMO

Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.


Assuntos
Células Dendríticas/imunologia , HIV-1/genética , Fenótipo , Proteínas do Envelope Viral/metabolismo , Vírion/patogenicidade , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Humanos , Modelos Lineares , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
J Virol ; 86(1): 195-202, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013046

RESUMO

The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization.


Assuntos
Fármacos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos Neutralizantes/genética , Linhagem Celular , Anticorpos Anti-HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Testes de Neutralização , Anticorpos de Cadeia Única/genética
13.
AIDS ; 24(11): 1633-40, 2010 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-20597163

RESUMO

OBJECTIVE: Increasing data support a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV-1 infection. We recently isolated a naturally occurring dimeric form of the anti-HIV-1 antibody 2G12 and found it to be significantly more potent than 2G12 monomer in neutralizing primary virus strains. However, given the unusual structure of dimeric 2G12 with two Fc regions, it was not clear whether 2G12 dimer could bind to the CD16 Fc receptor on ADCC effector cells or trigger ADCC. Here we compared the in-vitro ADCC activities of 2G12 monomer and dimer and investigated the effects of including ADCC-enhancing mutations in both forms of 2G12. METHODS: An in-vitro ADCC assay using target cells stably expressing gp160 was developed to evaluate the activities of 2G12 monomer and dimer with and without ADCC-enhancing mutations that increase the CD16-binding affinity of the 2G12 Fc region. RESULTS: Both 2G12 monomer and 2G12 dimer elicited ADCC, although the dimer showed increased potency [lower half-maximal concentration (EC(50))] in triggering ADCC, thus confirming its ability to bind CD16 and trigger ADCC. The ADCC-enhancing mutations improved the ADCC activity of 2G12 monomer more than 2G12 dimer such that their EC(50) values were nearly equal. However, no increase in nonspecific ADCC activity was observed using 2G12 IgGs with these mutations. CONCLUSION: Given the likelihood that ADCC plays a role in protecting against initial infection and/or controlling chronic infection, these data suggest 2G12 dimers and/or addition of ADCC-enhancing mutations could augment the prophylactic and/or therapeutic potential of 2G12.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Citotoxicidade Celular Dependente de Anticorpos/genética , Anticorpos Amplamente Neutralizantes , Moléculas de Adesão Celular/genética , Células Cultivadas , Proteínas Ligadas por GPI , Proteína gp160 do Envelope de HIV/metabolismo , Humanos , Imunoglobulina G/imunologia , Mutação , Multimerização Proteica , Receptores de IgG/metabolismo
14.
J Virol ; 84(1): 261-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19864392

RESUMO

The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) has several adaptations that allow the virus to evade antibody neutralization. Nevertheless, a few broadly cross-reactive neutralizing antibodies as well as reagents containing portions of CD4, the HIV receptor, have demonstrated partial efficacy in suppressing viral replication. One type of reagent designed for improved HIV neutralization fuses the CD4 D1-D2 domains to the variable regions of an antibody recognizing the CD4-induced (CD4i) coreceptor binding site on the gp120 portion of the HIV envelope spike. We designed, expressed, purified, and tested the neutralization potencies of CD4-CD4i antibody reagents with different architectures, antibody combining sites, and linkers. We found that fusing CD4 to the heavy chain of the CD4i antibody E51 yields a bivalent reagent including an antibody Fc region that expresses well, is expected to have a long serum half-life, and has comparable or greater neutralization activity than well-known broadly neutralizing anti-HIV antibodies. A CD4 fusion with the anti-HIV carbohydrate antibody 2G12 also results in a potent neutralizing reagent with more broadly neutralizing activity than 2G12 alone.


Assuntos
Fármacos Anti-HIV/imunologia , Anticorpos Biespecíficos/imunologia , Antígenos CD4/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Antivirais , Sítios de Ligação , Reações Cruzadas/imunologia , Reagentes de Ligações Cruzadas , Estabilidade de Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas
15.
Proc Natl Acad Sci U S A ; 106(18): 7385-90, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19372381

RESUMO

Monoclonal antibodies b12 and 4E10 are broadly neutralizing against a variety of strains of the human immunodeficiency virus type 1 (HIV-1). The epitope for b12 maps to the CD4-binding site in the gp120 subunit of HIV-1's trimeric gp120-gp41 envelope spike, whereas 4E10 recognizes the membrane-proximal external region (MPER) of gp41. Here, we constructed and compared a series of architectures for the b12 and 4E10 combining sites that differed in size, valency, and flexibility. In a comparative analysis of the ability of the b12 and 4E10 constructs to neutralize a panel of clade B HIV-1 strains, we observed that the ability of bivalent constructs to cross-link envelope spikes on the virion surface made a greater contribution to neutralization by b12 than by 4E10. Increased distance and flexibility between antibody combining sites correlated with enhanced neutralization for both antibodies, suggesting restricted mobility for the trimeric spikes embedded in the virion surface. The size of a construct did not appear to be correlated with neutralization potency for b12, but larger 4E10 constructs exhibited a steric occlusion effect, which we interpret as evidence for restricted access to its gp41 epitope. The combination of limited avidity and steric occlusion suggests a mechanism for evading neutralization by antibodies that target epitopes in the highly conserved MPER of gp41.


Assuntos
Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Epitopos/química , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Humanos , Testes de Neutralização
16.
J Virol ; 83(1): 98-104, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18945777

RESUMO

The antigen-binding fragment of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) antibody 2G12 has an unusual three-dimensional (3D) domain-swapped structure with two aligned combining sites that facilitates recognition of its carbohydrate epitope on gp120. When expressed as an intact immunoglobulin G (IgG), 2G12 formed typical IgG monomers containing two combining sites and a small fraction of a higher-molecular-weight species, which showed a significant increase in neutralization potency (50- to 80-fold compared to 2G12 monomer) across a range of clade A and B strains of HIV-1. Here we show that the higher-molecular-weight species corresponds to a 2G12 dimer containing four combining sites and present a model for how intermolecular 3D domain swapping could create a 2G12 dimer. Based on the structural model for a 3D domain-swapped 2G12 dimer, we designed and tested a series of 2G12 mutants predicted to increase the ratio of 2G12 dimer to monomer. We report a mutation that effectively increases the 2G12 dimer/monomer ratio without decreasing the expression yield. Increasing the proportion of 2G12 dimer compared to monomer could lead to a more potent reagent for gene therapy or passive immunization.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Substituição de Aminoácidos , Dimerização , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Mutação de Sentido Incorreto , Testes de Neutralização , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...